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The dispersion re la t ion  f o r  a f i n i t e  temperature magnetoactive 
plasma i s  derived i n  a form pa r t i cu la r ly  sui table  for t he  study of t h e  
e f f ec t s  of transverse s t a t i c  e l e c t r i c  and magnetic f i e l d s  upon t h e  
coupling between t h e  transverse and longi tudinal  modes. The der ivat ion 
i s  based on the  coupled Boltzmann-Vlasov-Maxwell equations under the  
one -dimensional small-s igna l  assumptions. 

The the -va ry ing  pa r t s  of  t h e  p a r t i c l e  d i s t r ibu t ion  functions 
f o r  a two-component plasma are divided into three  pa r t s ;  namely, those 
associated respectively with the  right-hand and left-hand c i r cu la r ly  
polarized transverse waves and t h a t  associated w i t h  t h e  longi tudinal  
mode. 

The mode coupling equation, which r e l a t e s  t h e  dynamic e l e c t r i c  
f i e l d s  of these modes, i s  derived i n  terms of t h e  time-independent 
pa r t  of t h e  d i s t r ibu t ion  function f o r  two cases: (a) longi tudinal  
propagation i n  t h e  presence of a t ransverse s t a t i c  e l e c t r i c  f i e l d ,  and 
(b) oblique propagation in the absence of  s t a t i c  e l e c t r i c  f i e l d .  

If the  t i m e  independent portions of -the d i s t r ibu t ion  functions 
a re  taken t o  be Maxwellian it is  shown t h a t  i n  t h e  low-temperature l i m i t  
t h e  dispersion relat ionship reduces t o  t h e  famil iar  expression f o r  t h e  
cold plasma. 
t ionship a re  b r i e f l y  discussed. 

Possible applications of t h e  derived dispersion r e l a -  

-iii- 
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DISPERSION RELATIONS FOR A MAGNETOACTIVE FINITE TEMPERATURE PLASMA 

I. - INTRODUCTION 

Wave phenomena i n  plasmas have been studied by many 

under a va r i e ty  of assumptions and, i n  general, coupling between t r ans -  

verse  and longi tudinal  modes i s  neglected. The longi tudinal  and 

t ransverse osc i l l a t ions  i n  plasmas a r e  s t r i c t l y  uncoupled only i n  t h e  

case of a nonre l a t iv i s t i c  plasma and i n  t h e  absence of any external  

magnetic f i e l d s  and temperature o r  densi ty  gradients.  The presence of 

an ex terna l  magnetic f i e ld7  or inhomogeneities i n  plasma density” 

and/or temperature r e s u l t  i n  the coupling of t he  longi tudinal  and 

t ransverse modes. 

It i s  a l so  a well-known fac t  t h a t  i n  t h e  absence of a t ransverse 

magnetostatic f i e l d  the re  e x i s t  two purely t ransverse and two purely 

longi tudinal  waves. The existence of a t ransverse magnetostatic f i e l d  

introduces a coupling between the t ransverse and longi tudinal  mot ion of 

t h e  pa r t i c l e s .  Thus there  appear mixed modes having both t ransverse and 

longi tudinal  components. This fac t  has been demonstrated theo re t i ca l ly ;  

f o r  example, by Denisse and Delcroix2 f o r  a uniform, unbounded two- 

component plasma based on a macroscopic descr ipt ion which uses Maxwell’s 

equations together  with t h e  continuity equation and t h e  equation of 

momentum conservation. 

negl ig ib le  compared t o  the  phase ve loc i ty  of t h e  wave and, of course, 

develop a l i nea r  theory. 

They assume that the  thermal ve loc i ty  i s  

It i s  the  purpose of t h e  present report  t o  derive t h e  dispersion 

re la t ionship  f o r  a magnetoactive f i n i t e  temperature plasma i n  a form 
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which i s  sui table  f o r  t h e  study of the  coupling of t ransverse and 

longitudinal modes due t o  t h e  presence of t ransverse s t a t i c  e l e c t r i c  

and magnetic f i e l d s .  

with t h e  Boltzmann-Vlasov equation and t h e  e f f ec t  of p a r t i c l e  thermal 

motions i s  taken in to  account. 

The derivation uses Maxwell's equations together  

- 11. MATHEMATICAL FORMULATION 

Consider a two-component plasma i n  which co l l i s ion  e f f ec t s  a r e  

assumed t o  be negl igible .  

and t h e  i o n  d i s t r ibu t ion  function F$,?,t) f o r  t h i s  plasma are  governed 

by t h e  Boltzmann-Vlasov equation: 

The electron d i s t r ibu t ion  function f (?,?, t )  

- af + + v.Vf - 2 (2 + ?x 3) .Vvf = 0 
a t  m 

and 

where m a n d  M are  t h e  electron and ion mass respect ively and e i s  the  

electronic  charge taken as a posi t ive quantity.  

f i e l d s  i n  the plasma are  governed by Maxwell's equations: 

The electromagnetic 

ai? 
O x 3  = -at 7 

+ 
V-D = p , 

+ 
V7'B = 0 , 

+ 
where t h e  e l ec t r i c  displacement vector D and t h e  magnetic f lux  densi ty  

B are,  respectively, re la ted  t o  t h e  e l e c t r i c  f i e l d  in t ens i ty  3 and t h e  

magnetic f i e ld  in t ens i ty  H i n  t h e  following manner: 

+ 

+ 

4 
- I  

I 
I 
I 
1 
I 
I 
I 
I 
1 
1 
I 
1 
I 
I 
I 
I 
1 
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9 9 + D = E E and B = poz 
0 

and p 

vacuum. The convection current density J and t h e  charge density p may 

be wr i t ten  i n  terms of t h e  d is t r ibu t ion  functions as 

denote the  permi t t iv i ty  and L e  permea,ility of t h e  
1 0 

9 

+ J = eJ?(F-f)d3v and p = e l ( F - f ) d 3 v  . 
(4) 

Consider t h a t  a l l  quant i t ies  of i n t e r e s t  a r e  composed of a 

time-independent p a r t  denoted by t h e  subscr ipt  0 and a time-dependent 

p a r t  denoted by t h e  subscript 1: 

+ 
B = zO6?) +zl(F),t) , 

Upon subs t i tu t ing  Eqs. 5 in to  Eqs. 1, 2 and 4, t h e  following time- 

independent s e t  of d i f f e r e n t i a l  equations (Eqs.  6) and t h e  time- 

dependent s e t  of equations (Eqs. 7) a re  obtained: 

+ V T f o  - ; e Bo + 7 x i;,)*.,f, = 0 , 



-4- 

V x 3  0 = 0 ,  

+ 
V X ~  = Jo I 

0 

WTto = 0 , 

+ JO = e 1  T(Fo-fo)d3v , 

= e J ( F  -f )d3v 
0 0  

and 

aTtl 
v x p  = - -  a t  ' 

I 
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4 J = e j  q(F1-fl)d3v , 
1 

pl = eJ(Fl-fl)d3v . 

In  the  present report  the following assumptions a r e  made and a 

rectangular coordinate system i s  employed: 

1. Small  amplitude conditions a re  s a t i s f i e d  so t h a t  t h e  terms 

involving t h e  products of time-dependent quant i t ies  a re  regarded as 

negl igible .  

2. All quant i t ies  vary only with one s p a t i a l  variable,  z. 

3.  All time-dependent quant i t ies  i n  t h e  system have t h e  e j (cut-kz) 

time and distance dependence. 

By Assumption No. 2 Eqs .  6c and 6e imply t ha t  

Po ( Z )  

, ( 8 )  oz - E = constant , E = constant and - - - 
aE 

€ 
0 ox O Y  aZ 

and Eqs.  6d and 6f y ie ld  

dB 
aZ poJoy 7 o y = -  aZ Po Jox and Boz = constant . (9) ox aB 

- =  

Under the  above-mentioned assumptions, Eqs. 7a and 7b become, 

respectively, 
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and 

1 aF1 
aF 

j(o-kvZ)F1 + [(Eox + v B - v B ) - + (Eoy + v z B ox - vxBoz) av 
Y 

y oz z OY avx 

aF 
0 

&F 
- v B  ) F + ( E ~ ~ + v B  x 1y - v B  y 1x )-I avz (U) 

Y 
+ (Ely + VzBlx x 1z 

Equations 7c and 7f give 

which implies t h a t  

+ E B  = o ,  (13 1 ElxBlx 1y 1y 

which i n  t u r n  suggests t h a t  t he  t ransverse time-varying e l e c t r i c  f i e l d  

i s  perpendicular t o  the  magnetic f i e l d .  On t h e  o ther  hand Eqs . 7c and 

7d can be combined t o  give 

where c = I/ 

writ ten in  i t s  component form as 

i s  t he  speed of l i g h t  i n  vacuum. Equaticrn 14 can be 

and 

1x o2 - a2E 
+ 2 E l X  - j”PoJ1, 7 322 c 

1 
1 
I 
I 
I 
1 
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Now consider a transformation of ve loc i ty  coordinates as given 

by 

I z v z ’  (16) v = v coscp , v = v sincp and v = 
X I Y 

+ + and, f o r  convenience of discussion, define t h e  quant i t ies  cu and a as 
c 

2 C (s m o  3 )  and 2 (i zo) . 

Then Eq. 10 can be transformed in to  t h e  following, using Eq. 12; 

(18) 
= - m -  M ( f o ) E  - ejql + M+(fo )E+  e m E iz  - i a ( ~  7 

0 
af o e  af e -39 + - e 

where 
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4 0  
cx x cy Y %z z 7  Lu g L u  

A 
u) = a  

and t h e  d i f f e r e n t i a l  operator D i s  defined as  

It should be noted t h a t  E - and E+ appearing i n  Eq. 18 correspond 

t o  the  e l e c t r i c  f i e l d s  of t h e  left-hand and right-hand c i r c u l a r l y  

polarized waves respectively.  

s tan t ,  and for  the present one-dimensional analysis,  from Eq. 7c,  it 

must be zero .  

Furthermore, from Eq. 12, BIZ i s  a con- 

- 111. DERIVATION - OF DISPERSION RELATIONSHIPS 

Consider t h e  time-dependent e lectron d i s t r ibu t ion  function f l  as 

consis t ing of t h ree  p a r t s  as indicated below: 

where t h e  f i r s t ,  second and t h i r d  terms of Eq. 20 can be regarded as 

t h e  d i s t r ibu t ion  of these electrons associated with the  right-hand 

c i r c u l a r l y  polarized, left-hand c i r c u l a r l y  polar ized and longi tudinal  

waves, respectively.  Since Eq. 18 must be valid f o r  an a r b i t r a r y  value 

1 
I 
I 
I 
I 
1 
I 
I 
I 
1 
1 



of 9, t he  subst 

of equations : 
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tut ion of Eq. 20 i n to  Eq. 18 y ie lds  the  following system 

and 

It i s  of i n t e r e s t  t o  note t h a t  when t h e  t ransverse s t a t i c  

= a+ - - cu, = 0,  
a+ = a - e l e c t r i c  and magnetic f i e l d s  are absent, i . e . ,  

t h e  system of equations (Eqs. 21) reduces t o  t h e  following set of 

equations : 

e af 
j(u-kvz+uZ)f - - a z -Z avz * - m M-(fo)E- , 
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which clear ly  suggests t h a t  no coupling between t h e  t ransverse and 

longitudinal modes can take place.  

presence of e i t h e r  e l e c t r i c  or magnetic t ransverse s t a t i c  f i e l d s  w i l l  

lead t o  coupling between the  modes. 

However, it i s  obvious t h a t  t h e  

In the present analysis  two cases a r e  considered: 

Case 1. Absence of s t a t i c  t ransverse magnetic f i e l d  and longi tudinal  

e l e c t r i c  f i e ld :  (a+ = w = 0,  az = 0) .  

Case 2. Absence of e l e c t r o s t a t i c  f i e l d :  (a+ = a = a = 0) .  

For these cases, it i s  possible  t o  solve Eqs .  25 f o r  f - ,  f +  and g 

e x p l i c i t l y  in terms of E-, E+, and EIZ which can be expressed as  

follows (see Appendix A f o r  d e t a i l s ) :  

Z - 

f+ = k E + k22E+ + kZ3ElZ , 
21 - 

where f o r  Case 1 

Z z 

-1 
- I  
1 
1 
1 
1 
1 
1 
1 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
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with b 4 (u-kVz), and fo r  Case 2 

- - k 
12 

- 
k13 - m 6  

with 
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Similarly by writ ing t h e  ion d i s t r ihu t ion  function as 

F1 (z, t v17 vz, IP) = F - (z, t , vL7 vz ) e jT + F+(z,t,vL,vz)e -jT + G(z,t,vL7vz) , 

(26 1 
and i n  view of t h e  f ac t  t h a t  Eq. 11 has exactly t h e  same form as Eq. 10, 

t he  subst i tut ion of  Eq. 26 in to  Eq. 11 resu l t s  in a system of equations 

governing F - F, and G, similar t o  the  system (Eqs.  21). By defining 
+ + 
R and A as 

+ A  R = (- iso) and 2 4 (%zo) , 

F - , F+ and G can be expressed as  

F- = KllE- + K12E+ + K13ElZ 7 

F+ - K Ed + K22E+ + K23E1Z 7 
- 

21 

G = K,,E- + K3,E+ + K33Elz 7 

where f o r  Case 1 

- A  e L(>) 
M + av, 

- 1  
- 1  
1 
1 
I 
I 
I 
1 
1 
I 
I 
1 
1 
I 
I 
1 
I 
I 
1 
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and f o r  Case 2 

= -  e Mo(Fo) [.a+ (t ) (b-Qz)] 7 

K31 M A  

K33 = - -e - 1 - aFo (fl; - b2 + 4sl+Q-) + 
D ( 2  ) [b (: ) Q+Q-] 7 M A avz 
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& 1, (A k jA ) .  
Y 2 x  

Since t h e  time-dependent d i s t r ibu t ion  function i s  now e x p l i c i t l y  

expressed i n  terms of the time-varying e l e c t r i c  f i e l d ,  t he  convection 

current density J 

terms of the  e l e c t r i c  f i e l d  with the  aid of Eqs. 7g and 7h, respect ively.  

On the  other hand, t he  e l e c t r i c  f i e l d  i s  re la ted  t o  t h e  current density 

by Eqs. 15. Consequently the  e l e c t r i c  f i e l d  can be wri t ten as 

-) 
and t h e  space-charge densi ty  p can be expressed i n  

1 1 

co 0 0 %  

-00 0 0 

and 

Q3 00 2rr 

u -00 0 0 

Upon subs t i tu t ing  F1 and f given by Eqs.  26 and 20 respect ively 
1 

31 t h e  following s e t  of equations i s  obtained: in to  Eqs. 

where 

R 
P 

E - 

E+ 

E I Z  

- 
4 - "SP q) ; P = 1, 2 ; q = 1, 2, 3 

i n  which the  integrat ion operators P and Q a re  defined as 

(33 1 
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and 

2Jr 

)e-’*’ + (K32 -k 32 )e-jrp] drp , 
0 

2Yc 
= [(K13-k13) + (K23-k23)e-’2v + (K33-k33)e-jT] drp , 

0 
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Therefore the dispersion re la t ionship  f o r  t h e  system under consideration 

i s  given, f rom Eqs. 32, as 

d(w,k) = = o .  (36 1 

It should be observed t h a t  once t h e  t i m -  independent d i s t r ibu t ion  

functions f o  and Fo a r e  known, t h e  parameters k 

i f i e d  so tha t  t h e  R in tegra ls  can be evaluated. Then a de ta i led  

study of 

propagation charac te r i s t ic  of waves i n  t h e  system. 

and K a r e  spec- 
P7 9 P, 9 

P, 9 

dispersion r e l a t ion  (36) can be made t o  obtain the  

Before considering t h e  time-independent d i s t r ibu t ion  functions, 

it i s  of i n t e re s t  to observe t h a t  f o r  Case 2 the parameters K and 

k a r e  independent of cp, as shown i n  Appendix A, and Eqs. 35 a r e  

reduced t o  

P, 9 

P, 9 

= R, = 0, then S = 0 f o r  
PA Of - Furthermore, i f  Box = B = 0, i . e . ,  

OY 
p # 4, which implies t h a t  R I n  other words, t he  

off  -$iagonal elements of t h e  determinant i n  dispersion re la t ionship  

(36) vanish, so t h a t  Eq. 36 gives 

= 0 f o r  p # q .  
P? 9 

and W3, = R,, for t h e  case w+ = R, = 0 .  - 
Rll, w22 - R22 - - where W = 

11 

Equation 38 implies that 

Wl1 = 1 , W2, = 1 and W,, = 1 , (39 1 

4 
1 
1 
I 
I 
I 
1 
3 
I 
I 
I 
I 
I 
I 
1 
1 
1 
I 



-17- 

which represent t h e  dispersion relat ionships  f o r  the  left-hand and 

right-hand c i r cu la r ly  polarized modes, and the  longitudinal mode 

respectively: 

e 

1 +  p d v  dv = 0 (40b) (cu2 -c 2k2) l l Z  
--03 0 

and 
m a ,  

dvldvz = 0 

i n  which Eqs. 40a and 40b a re  the same as those given by Montgomery and 

Tidman4. 

N. - - TIME-INDEPENDENT DISTRIBUTION FUNCT IONS 

"he time-independent d i s t r ibu t ion  functions fo and Fo must 

satisfy Eqs.  6a and 6b respectively.  It i s  not d i f f i c u l t  t o  show t h a t  

t h e  solut ion of Eq. 6a has t h e  form 

f0G73 = f ( w >  0 9 (41) 

where w = (1/2)m1?1"-eOC;?), i n  which the e l e c t r i c  s ca l a r  po ten t i a l  

?a(?) i s  re la ted  t o  t h e  e l ec t ros t a t i c  f i e l d  by 
+ 

= - V @  . Eo 
Similarly t h e  solut ion of Eq. 6b has t h e  form 

FOG,$ = 
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where 

w = $ ~1712 + e @ ( r >  . (43 

It should be noted t h a t  t h e  e l e c t r o s t a t i c  f i e l d  20, appearing i n  

Eqs .  6a and 6b, i n  general consis ts  of two par t s ;  2o = 3 + 2 , where 2 
i s  t h e  external ly  applied s t a t i c  e l e c t r i c  f i e l d  and 2s i s  t h e  space- 

charge f i e l d  which m u s t  a l so  s a t i s f y  Eq. 6e. 

S a a 

For a one-dimensional analysis  i n  a Maxwellian plasma fo and Fo 

can be writ ten as  

(44) 

and 

where 

(-J 4 m  M 
e 

i n  which K i s  t h e  Boltzmann constant, no and Te a r e  the  concentration 

and t h e  temperature of t h e  electron respectively,  and N 

concentration and the  temperature of t h e  ion respectively.  

t h e  f ac t  t ha t  both fo  and Fo a re  expressed as  even functions of vX7 v 

and vz i n  Eqs. 46, Eq. 6g gives Jox = Joy - Joz = 0. 

t h e  magnetostatic f i e l d  must be constant, i . e . ,  Box, E 

a l l  independent of  z .  

and Ti a re  the  
0 

In view of 

Y 
Then from Eqs .  9, 

and Boz a r e  

- 

*Y 

On the other  hand, Eq. 6h gives 

- -  e@(z> e @ ( d  

me - eno e mi 
p,(z) = eNo e (47 

' I  
- i  
1 
I 
I 
I 
I 
Y 
I 
I 
I 
1 
1 
1 
1 
I 
1 
1 
I 
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If e l ec t ros t a t i c  f i e l d s  Eox a n d  E 

determined from Eqs. 8 and 47. 

consideration t h e  x- and y-components of t h e  space-charge f i e l d  E 

absent. 

implies t h a t  Esz = 0 which w i l l  b e  t h e  case i f  (bQ/dzj = 0 .  

words, CP i s  independent of z, which is  equivalent t o  requiring t h a t  fo 

and Fo be independent of z and t h e  plasma under consideration be homo- 

geneous. 

are  constant, then E OY 0 2  
can be 

For t he  one-dimensional analysis under 

are 
S 

For t h e  two cases under consideration, t h e  assumption az = 0 

In other 

If the  space-charge poten t ia l  @ ( z )  i s  s e t  equal t o  zero, 

Eq. 47 suggests t h a t  po = e(No-no) and since E os must be zero 7 Po i s  

zero. 

i s  met. 

Consequently No = no when t h e  condition of e l e c t r i c a l  n e u t r a l i t y  

It i s  of i n t e r e s t  t o  note t h a t  f o r  a homogeneous plasma pervaded 
+ 

by a uniform s t a t i c  e l e c t r i c  f i e l d  E and magnetic f i e l d  go, Eq. 6a 

becomes 

a 

and f can be given i n  t h e  form 
0 

where the  d r i f t  veloci ty  2 i s  given by 

Since t h e  d r i f t  ve loc i ty  depends ne i ther  on t h e  r a t i o  e/m nor on t h e  

i n i t i a l  veloci t ies ,  it i s  the  same f o r  ions and electrons regardless of 

t h e i r  energy. Crossed magnetic and e l e c t r i c  f i e l d s  produce a col lect ive 
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displacement of a l l  o f  t h e  e l e c t r i c a l  charges i n  the  d i rec t ion  of 

3 x zo. Thus Fo can be a l so  given by a 

++ 4 2  

FO = N o ( > )  exp (-ailv-u12) . 

It should a l s o  be noted that the  d is t r ibu t ion  functions f0 and 

Fo given by Eqs. 44 and 45, respectively, a r e  adequate f o r  t h e  study of 

t h e  case where there  i s  no external ly  applied e l ec t ros t a t i c  f i e l d ;  s ince 

V f = -2a f 7 and (aO/az) = -E 

by Eq. 44, indeed s a t i s f i e s  Eq. 6a. 

external ly  applied e l ec t ros t a t i c  f i e l d  i s  present,  fo, given by Eq. 44, 

i s  not adequate since it does not s a t i s f y  Eq. 6a and must be modified. 

+ %?E and Bo = kB a r e  considered, where Suppose t h a t  Eo = 

+ +  + 
1, J and k are the  u n i t  vectors along t h e  coordinate axes respectively,  

Eaz and E 

Then it is  not d i f f i c u l t  t o  show t h a t  t h e  l’ollowing form of fo s a t i s f i e s  

Eq. 6a: 

it can eas i ly  be shown t h a t  f , given v o  e o  s’ 0 

However, f o r  t h e  case where t h e  

+ +  + + +  
+ j E  S 0 aY 

+ 
are the  components of Ea, and E i s  t h e  space-charge f i e l d .  a Y  S 

( 5 2 )  

where 2 = flux -I. 3u  ) i s  t h e  d r i f t  ve loc i ty  as defined by Eq. 50. 
Y 

For the consideration of t h e  case where interpenetrat ing plasmas 

such as electrons d r i f t i ng  through ions t o  form t h e  configuration of a 

plasma carrying a current along t h e  l i n e s  of force, t h e  d r i f t  ve loc i ty  

along t h e  direct ion o f  s t a t i c  magnetic f i e l d  must be taken in to  account. 

If t h i s  d r i f t  ve loc i ty  uo i s  much greater  than the  transverse d r i f t  

veloci ty  due t o  t h e  transverse e l ec t ros t a t i c  f i e l d ,  which i s  t h e  case 

-I 
-I 
1 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
1 
1 
1 



-21- 

far weak s t a t i c  f i e l d s ,  then w 

expressed as  

asgociated with fo of Eq. 44, can be e’ 

(53 ) 2e 
e m w = r< + (v,-uo)21 - - @ ( z )  . 

Thus the  time-independent d i s t r ibu t ion  functions f -  and F- must be 

properly chosen according t o  the type of problem under consideration. 

U U 

The two cases defined in  Section I11 are  exam,*iel f o r  a homo- 

geneous plasma. 

homogeneous Maxwellian plasma i s  considered i n  t h i s  section. 

Fo can be wri t ten as 

As an i l l u s t r a t i o n  of t he  method of analysis  a 

fo and 

and 

exp (-a w ) . Fo = No ($7” i i  (55 1 

For Case 1: 

w e = re + (vz-uoe)21 ; wi = cv; + (vz-uoi)21 . (56) 

For Case 2: 

w e = ( f + v 2 )  = wi - (57 1 

Having specified t h e  form of fo and Fo, t he  coef f ic ien ts  K 
PI 4 

and k i n  Eqs. 24, 25, 29 and 30 now can be determined. For t he  

forms of f0 and Fo given by Eqs. 54 and 55, these coef f ic ien ts  a r e  

independent of q, and the  evaluation of the  R 

r i ed  out.  

Case 2 respectively-, (see Appendix A f o r  de t a i l s ) :  

Pr 4 

in tegra ls  can be car-  
Pr 4 

Thus dispersion relationship (36) gives, f o r  Case 1 and 
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For' Case 1: 

DZ (az- l )  , 

+ j - ]  uO ? 

J., 

E2 +E2 
? 

oz 

(59) 

4 
*I 
I 
I 
3 
I 
I 
1 
I 
I 
1 
1 
I 
1 
I 
I 
I 
I 
1 
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The R ' s  and U ' s  i n  Eqs .  58 and 59 are  defined as 

= (?) , uo = e) 7 u+ = , u, 

It should be noted t h a t  in tegra ls  Go(Y) and go(Y) defined i n  

Eqs. 59 have been discussed i n  d e t a i l  by Stix3 and h i s  r e s u l t s  can be 

applied i n  the present invest igat ion.  Y, appearing i n  E q s .  59, may be 

complex i n  general and takes  t h e  values (ufflz/k), (u?LDZ/k) and (m/k). 

Let 

c 2  = ai(vz-uoi)2 . (61) 
, 

Go may be written, f o r  I m ( u )  < 0, as follows: 

where 

cx = &- (Y-uoi: 
n i 

The contour of in tegra t ion  may be deformed and ana ly t ic  contin- 

uation used t o  evaluate t h i s  i n t e g r a l  i n  such a way t h a t  it i s  valid 

over t h e  en t i r e  cu-plane: 
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where t h e  pr inc ipa l  value integration i s  t o  be carr ied through the  pole 

-A  N 
ar, ck . n 

On t h e  other hand, when S(5 ) i s  wri t ten as 

+ L--e asymptotic expans-Dn of S(k)  exhibi ts  a Stokes phenomenon; t h a t  is, 

d i f fe ren t  asymptotic expansions a r e  required f o r  va l id i ty  i n  d i f fe ren t  

portions of the  E-plane. The Stokes phenomenon i s  a cha rac t e r i s t i c  of 

t he  asymptotic expansion of analytic functions. For the  expansion of 

S(E 1, 

S(E) = " ( 5 )  + U(E> , (65)  

where 

+ ... 

It should be noted t h a t  in  Eq. 63, t he  Gaussian term i n  Go 

diverges whenever ]Re an/ < I I m  an / .  

shows t h a t  Go, i n  f ac t ,  converges t o  zero as  I I m  anI-I i n  t h e  unstable 

half-plane (Im co < 0 ) .  It i s  the U(5  ) term i n  S( ( )  which reconciles 

t h i s  apparent difference.  The en t i r e  r e su l t  i s  bes t  summarized with 

the  a i d  of a quadrant diagram f o r  t he  an (sgn k)  plane (see Fig. 1). 

However, r e l a t ion  (62) f o r  Go 
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I 

FIG. 1 QUADRANT DIAGRAM FOR THE a n (sgn k) PLANE. 
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The following asymptotic expansions f o r  G 

quadrants indicated: 

are appropriate i n  t h e  
0 

Quadrants A and B: 

Quadrant D: 

Quadrant C: 

Go = -j2T(an) . (67)  

I n  Quadrant D, G diverges as a --j a. Equation 63 shows t h a t  

t h e  Gaussian term may be neglected i n  Quadrants A and B because it i s  

small f o r  l a rge  values of a and it i s  noted t h a t  t h i s  term i s  

rigorously absent i n  Quadrant C.  

0 n 

n' 

If Go i s  expanded i n  t h e  f i r s t  few terms of i t s  asymptotic 

expansion i n  Quadrants A, B and C, ?.e.,  

then various f ac to r s  appearing i n  dispersion equations (58)  and (60 )  

can be determined and, i n  principle, a de ta i l ed  study of the 'propagation 

cha rac t e r i s t i c s  of various waves can be made. It should be noted t h a t  

i n  Eq. 68 the  three terms on the right-hand s ide represent, respect ively,  

the Landau o r  cyclotron damping term, the cold plasma, and t h a t  due t o  

a f i n i t e  thermal spread. 



- VI. SPECIAL CASES 

Suppose t h a t  t he  difference between t h e  phase ve loc i t i e s  of 

various modes i n  t h e  system and t h e  d r i f t  ve loc i ty  a re  la rge  i n  compar- 

ison t o  t h e  electron thermal ve loc i ty  (l/$), which i s  a l so  grea te r  

than t h e  ion thermal ve loc i ty  (l/q), so t h a t  Go(Y) and go(Y) may be 

approximately wri t ten as 

2ai ( Y -uo ) 2 1 7  
G ~ ( Y )  = - j  [l + 5 (Y-uoi) 

r -7 

(69) 

Then t h e  various fac tors  appearing i n  Eq. 58 can be wri t ten as follows: 

R2 (CU-kuoi) 

D* = [ (m2-c2E2) (LO'RZ-kuoi) 

(02 (cu-kuo e ) 

e -  

+ 
(a2-C2k2) (&(I) -ku ) 

z oe 

R2 co2 
- P+P- 

DZ - [ ('U-kuoi)2 (u-kuo,)' 

-28 - 
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- uo (1 + 2ai(u0-u0i)2 ) ]  T 2ae ( 

1 T - - 
f% (U+ - -u0 ) (Uo -u0 ) 

uo 1 7+ = ai (3 uo c (u+-uoi)2 - 
u, 5 2 2  

(u0-uoi)2 

It should be noted t h a t  when the  s t a t i c  transverse e l e c t r i c  f i e l d  

i s  absent, p = 0 and Eq. 58 becomes (D D D ) = 0. Then the dispersion 

equation f o r  t he  uncoupled longitudinal mode i s  given by D, = 0, i . e . ,  

- + z  

Q2 U2 

P+P = 1 ,  
(U-ku o i  )2 (a-kuoe)2 

which i s  t he  fami l ia r  expression f o r  a two-stream system. 

Similarly t h e  various factors  appearing i n  Eq. 60 can be wr i t ten  

a s  
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- 13 7 

- QE uo - 
f i o  

M+ Qz (02-c2k2) 

co2 u 
+ [$ (1 + A) - (1 + A) + (?)$I 

e +  e o  0 u) Z (02-c2k2) - 

It should be observed t h a t  when a t ransverse s t a t i c  magnetic f i e l d  i s  

absent, v = 0 and Eq. 60 becomes (D-D+DZ) = 0. 

equations f o r  the  uncoupled transverse modes a re  given by D, = 0, i . e . ,  

Then the  dispersion 

- 
w20 Gu 1 P 

(UF-C2k2)(o+Rz) (' + i +  ) + ((02-c2k2) b+o,) e +  
1 =  

(73 ) 

Furthermore if ICXivpI >> 1, and la u21 >> 1, then Eq. 73 becomes e f  

+ = 1 ,  
(u)' -c2k2 ) (m +Rz ) ((02 -c2k2 ) Q+ oz ) (74) 

which i s  a familiar expression i n  t h e  cold-plasma theory. 

i s  t h a t  given by Denisse and Delcroix2 and i s  simply the  Appleton-Hartree 

Equation 74 
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equation of t he  magnetoionic theory. It should be noted from Eq. 17 and 

Eq. !27 t h a t  RZ i s  opposite i n  sign t o  wz, i . e . ,  w = [(e/m) Bo,] and 

R 2 = [-(e/M) Bo,] - 
2 

With the  a id  of the  coupled Boltzmann-Vlasov-Maxwell equations, 

under a small-signal, one-dimensional analysis,  t h e  dispersion r e l a t ion  

f o r  a f i n i t e  temperature, homogeneous, magnetoactive plasma has been 

derived. 

gation in  the presence of a transverse s t a t i c  applied e l e c t r i c  f i e l d ,  

as well  as  t o  t h e  case of oblique propagation i n  t h e  absence of a 

s t a t i c  e l e c t r i c  f i e l d .  Once the time-independent p a r t s  of t h e  d i s t r i -  

but ion functions of consti tuent plasma pa r t i c l e s  and applied s t a t i c  

Equation 36 i s  applicable t o  the  case of longitudinal propa- 

e l e c t r i c  and magnetic f i e l d s  a r e  known, t h e  R elements of t h e  
P7 9 

determinant i n  Eq. 36 a re  specified and t h e  dispersion equation can be 

solved f o r  t he  propagation constants. 

Although various forms of t h e  time-independent d i s t r ibu t ion  

functions m a y  be considered and used i n  the  evaluation of t h e  elements 

of t he  determinants i n  Eq. 36, the present report  considers a Maxwellian 

d i s t r ibu t ion  function. 

persion equations f o r  Cases 1 and 2 a re  given by Eqs. 58 and 60, 

respect ively . 

For a homogeneous Maxwellian plasma the  d i s -  

It should be pointed out t h a t  t h e  formulation of t he  dispersion 

r e l a t ions  i n  t h e  form given by Eq. 36 has cer ta in  advantages s ince t h e  

various charac te r i s t ic  modes ( i .e . ,  t h e  right-hand and left-hand 

c i r c u l a r l y  polarized t ransverse modes and t h e  longi tudinal  modes ) can 

e a s i l y  be iden t i f i ed  and t h e i r  possible mutual coupling caused by the  
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presence of s t a t i c  transverse e l e c t r i c  and magnetic f i e l d s  i s  c l e a r l y  

indicated.  Furthermore, a de ta i led  study of these  derived dispers ion 

r e l a t ions  should provide usefu l  information with regard to :  

e f f ec t  of transverse s t a t i c  e l e c t r i c  or magnetic f i e l d s  on t h e  propa- 

gation charac te r i s t ics  of electromagnetic waves i n  a magnetoactive 

plasma, as w e l l  as on the  polar iza t ion  of t he  wave, and (b) t h e  

question of energy conversion between t h e  modes (with t h e  a id  of 

Eqs. 3 2 ) .  

(a) t h e  

The dispersion r e l a t ion  given i n  Eq. 36 i s  p a r t i c u l a r l y  su i tab le  

f o r  t h e  study of t h e  coupling of t h e  longi tudinal  mode t o  t h e  t ransverse 

modes due t o  t h e  t ransverse s t a t i c  e l e c t r i c  o r  magnetic f i e l d  present 

i n  the  system. A na tu ra l  important question then a r i s e s  as t o  how 

ef fec t ive  i s  t h i s  type of coupling. This question i s  being investigated 

present ly  and w i l l  be discussed i n  a fu ture  report .  For example, by 

t h i s  type of coupling mechanism, t h e  energy car r ied  by a longi tudinal  

plasma osc i l l a t ion  may be converted in to  t h e  t ransverse electromag- 

n e t i c  wave energy i n  the  so l a r  corona, thus  leading t o  t h e  escape of 

so l a r  radio noise from t h e  so l a r  corona. 

There a re  a l so  phenomena found i n  t h e  ea r th ' s  ionosphere, e.g., 

t h e  cutoff,  amplification, and Landau damping of a whist ler  propagation 

i n  the  ionospheric plasma, which may be explained by t h i s  type of 

coupling mechanism. 

whis t le r  i n  the  ionospheric plasma, recent ly  observed b y  Helliwelllo,  

might a l s o  be explained. 

at  work i n  some laboratory devices involving t h e  in te rac t ion  of t h e  

t ransverse cyclotron wave and longi tudinal  space-charge waves. 

In  addition, t h e  t r igger ing  of VLF emissions by a 

F ina l ly  t h i s  type o f  coupling mechanism may be 



APPENDIX A.  DERIVATION OF VARIOUS EQUATIONS 

A . l  Derivation of *. 27 and 29 - - --- 
From Eq. 25, f o r  Case 1 (o+ = o = 0 and az = 0):  

1 af+ 1 af 
&v = y f -  and - - I I av I - v I f+ 7 

2a 2a. af - + 0 av E I Z  ’ jbg - - f+-7 f =  - 
VI 

where b (w-kv ) and q E (e/m). 
Z 

When t h e  f a c t  t h a t  b/&,(f+/v,) = 0 and a/bI(f-/vL) = 0 i s  used, 

with t h e  a id  of Eq. A . l ,  d i f fe ren t ia t ion  of Eq. A . 2  with respect t o  vI 

-33 - 
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+ 

For Case 2 (a+ = a- - - az = 0) ,  f r o m  Eqs.  25, 

V 
Z D ( f + )  = - - 
I - v f, ’ 

EIZ 

and 

U s i n g  the f a c t  that 



and then operating 
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D on Eq. A . 6  yie lds  

( A . 8 )  

Subst i tut ing Eq. A . 8  i n to  E q s .  A . 4  and A . 5 ,  and solving a lgebra ica l ly  

for f-, f+ and g i n  terms o f  E-, E+ and EIZ gives 

where k = (bll/Ao) [ (coz-b )b2 + 2co+co co] , 11 - 

= (b22/Ao) [ -b2(b+cuz) + 2~+u-~]t 
k22 
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where 

E b‘[”)+u) U) + (~):-b’)b] E b2E0 , 
*o - 

- A.2 Determination -Rp,q of  (----- f o r  Case 1 with Weak Transverse S t a t i c  

Elec t r ic  F ie ld )  

Assuming t h a t  

- 

2 2  - e e r  (Vz-Uoe> +vJ 
fo - ne 7 

air (vz-uoi) 2 2  fVJ 

Fo = Ne ’ 

then 

0 
afo af 

= - 2c%e(vz-Uoe)fo , = - 2a e i o  v f ’ 
z 

D ( f o )  = 2CX u v f e o e l o  

af ‘ + - D ( f o )  k = - Z v f  (I-%) e 1 0  Mo(fo)  = - 
U, 

(A.  10) 
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Furthermore, f r o m  Eq. 287 

ai' 
C can be obtained by replacing fop  ae, 'le? uoe7 a+ and LU by F,, 
PI q Z 

A+ and R respectively i n  Eq. A.11. Let 
Z -1p U 0 i ?  - 
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(A.12) 

with 

where 

and let 

4x2 f o  = wonol(vz)e e l  
? 

-a v2 F~ = W~N~L(V,)~ i i  
? 

in which 

(A. 14a) 

(A .14b)  
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W m 

1 - 
? 

-ai< - -  
dvI 2 6  A 

1 v2e I 1 ' I31 dvI 2 6  

-a v2 
= -  e l  

0 

'3e J v3e I 

0 

1 
2 -a v2 

' Ili - 
'dv = - . 

'le 3 J ' v e  I dvL 2clIe = J P y e  I 2ai 
1 -a v 

- 
l 

- -  e l  

0 0 

Define the  in tegra l  

m 

Qo[Y] E Y(vZ)dvZ . 
-03 

Then subs t i tu t ing  Eqs. A . l l  into Eqs. A.14 ,  with t he  a id  of Eqs.  A . 1 2  

and A . 1 3 ,  yields  
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where 

L e t  

.I 
-i 
1 
1 
1 
1 
8 
1 
1 
1 
I 
i 
I 

I 
1 
I 
I 
1 

a 
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zO = (1-T) , zo 3 (1 -?) ’ uo E e) 9 

DZ [(D2T + d,r) - 11 . 

Since V and v can be wr i t ten  as 

V = V + + V  - and v = v++v- , 

where 

and 

Eqs.  A.15 can be wr i t ten  as 



(A. 16) 

where 

E ( Z D S  + z d s )  , 
0 2 f  0 2 f  

B, ( a . D  1 1 -  P, + aedlp,)  , 

Y +  - 2 ( a D V  i 2 k  + a d v )  e 2 f  . (A .17)  

Subst i tut ion o f  E q s .  ~ . 1 6  into Eq .  36? with t h e  aid o f  E q s .  A .17 ,  y ie lds  

D + D - D ~  = - ~P,P,[D,(D-Y- - a - -  B ) + D-(D+Y+ - a+@+)] , (A.W 

which i s  Eq.  58. 

4 
- D  
1 
I 
1 
1 
I 
I 
1 
1 
I 
1 
I 
1 
I 
I 
I 
1 
1 
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Define t h e  in t eg ra l s  G ( Y h  and %(Y)  as 
P 

which has been discussed by Stix3. 

integrand i n  E q s .  A . 1 9  it can be shown t h a t  

By  simple manipulation of t h e  

( A . 2 0 )  
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so that 

G 
T j - [u G (u+> - U~G~(U~)I k - + o  - 

Upon substituting Eqs.  A.21 into Eqs .  ~.16 and A.17, 

(A. 21) 
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where 

e) ' & 
Rl E (j Dl) = j JF (w2-c2k2) 

r E (j 7 G ..> = j G w1 
1 e (u2-c2k2) 
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and f o r  a homogeneous plasma @ i s  independent of z. 

A.3 Determination of - - - %,s 
For Case 2, 

-a (3 + If) e z  
? n w  e - 

f o  - 0 1  

-a,(* + 3) 
1 2  I 

Fo = NOWl e 7 

0 
af 

0 
af 

&z 
- = -2a v f - = - 2 a v f  e z o  ’ e 1 0  ’ 

Tav a ( afI ) = (2ae)2 vzvlfo , D ( f o )  = 0 , Mo(fo) = -2QlevlfO . 

Then from Eqs. 25, 

kll 

k12 

k13 

21 
k 

k22 

(A. 24a) 

(A.24b) 

(A.24~) 

(A.246) 

(A.24e) 

=I 
*I 
I 
I 
I 
1 
I 
1 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
1 
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(A. 24f) 

(A.24g) 

(A. 24h) 

(A.241) 

K can be obtained by replacing fo, a,, qe, a+, wZ and 6o by P, 9 

Fo, ai, -vi, Ri, RZ and A i n  Eqs.  A.24. Lett ing 
0 

-a v 2  e z  l (vz)  = e and L(vz )  = e 

i n  Eq. A.14b, and defining 

to 

E f v:(Kp,q-k )dvl ; p = 1, 2 ; q = 1, 2, 3 , %, 9 P, 9 
0 

with t h e  a id  of Eqs. A.12 and A.lf7 gives 
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where Qo, D1, D2, dl and d2 a re  as defined previously i n  Eqs. A.15 .  

should be observed t h a t  t h e  integrand of R 

has s ingular i t ies  a t  vz f o r  which b = 0, A = 0 o r  Eo = 0, i . e . ,  

It 

, p,q = 1, 2, 3 i n  Eqs.  A.25, 
P, 9 

-I 
-I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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and 

b3 - u)Eb - 4u)+u)u) = 0 (A. 2611) 

which a re  the  cubic equations in  b: whose discriminants a re  given: 

It i s  not d i f f i c u l t  t o  see t h a t  E q s .  ~ . 2 6 a  and ~ . 2 6 b  have 

e i the r  only one r e a l  root and two complex con jwa te  pa i r  roo ts  o r  

three r e a l  roots according t o  whether 

or 6, < 0, respectively; i n  other words, according t o  whether 

> 0 or  4 < 0, and 6, > 0 

and 

Suppose t h a t  the  following conditions a re  sa t i s f ied :  

4 ( 9 )  = 4(*) o+m 
= ( B2 o,X2o.> +B2 << 1 . 

Z Z oz  

Then 

A = b(L?E-b2) and a0 = b(u)E-b2) . 

(A. 28a) 

(A. 28b) 
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If 

then Eqs .  A . 2 5  can be wri t ten as 

4 
-I 
B 
1 
1 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
1 



I* 
I- 
1 
I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
1 
1 
I 
I 
I 
I 
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= (D+ + 1) - 2V1V2 9 
R1 1 

= -2v; W I  , 
R12 

- - v 2 U +  7 

R13 

= -2v: W I  , 
R21 

R22 1 2  

R23 - 

= (D- + 1) - 2 V  V W I  7 

= -vl w M + 2 v F 2  a Q J 

RQ1 = 2 V l  N+ 7 

= -2v2 N 7 
R32 - 

R = (D +1> 7 z 33 

where 

I (DIC + dlc) , 

- 
Mk = (DIXk + d,xJ , 

Nk = (D2Gk + d2g,) 7 
- 

Q E (DIF + d l f )  . 

Subst i tut ion of Eqs. A . 3 2  in to  Eq. 43 y ie lds  

( A - 3 2 )  

( A - 3 3 )  
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(D+ - 2v1v2~I)[DZ(D - 2~ v & I )  - ~ v , v ~ & M  - -  N + ~V:V:W Q,N - ] 
1 2  

- ~ v ~ v ' % ~  {(N+ + N ) CI(M+ + M-) + ~V,V~IQ]J . (A.34) 
1 2  

It should be noted that since 

and 

where 

- = Qo(F> 7 

I and Q can be wri t ten as 

(A.35) 

Since 4v  v << 1 i s  assumed, and 14 and Q a re  of t he  Same order 
1 2  - 

of magnitude, Eqs .  A.34 can be  reduced with t h e  a i d  of  Eqs.  A .35  t o  
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which i s  Eq. 60 for v2 (v1v2). 

On the  other hand, w i t h  the  aid of Eqs .  A.19, X, can be wri t ten - 
as 

so t h a t  
c 

x+ = ~ [Go(U+) - G 0 0  (U ) ]  + H, , 
kRz 

where 

Similarly 

where the  G o ' s  a r e  as defined in  E q s .  A .19 .  

However, s ince 

then from E q s .  A.20, 

Similarly, 



Furthemor e, 

and 
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+ j - 

Subst i tut ing these  expressions of X+, - G,, e tc . ,  i n t o  Eqs.  A.32 and 

A.33 gives 

M+ C a n  be expressed as - 

(A.37) 

4 
-I 
I 
E 
I 
I 
I 
1 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 
1 
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A . 4  Derivation - of %. - 70 - 
From Eqs. 69 

r 1 

and 

1 u - u  

2ai(u_+ - UoJ2 
R Z G (U+) = % 

- o i  (w2 -c 2k2 ) 1 0 0  - 

Therefore 

- - 1 
(Uo-Uoi 

- - 1 

o oe (u -u )2 
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and consequently 

D 2 = [  ) 2  - 11 7 

- uo l1 + 2a (u -u ) 2  1) 
i 0 o i  

- uo l1 + 2ae(uo-uoe l2 1) 

(u0-uoi)' l 7  
ye[ (Uk-Uoe)go(uk) - (uo-Uoe)go(Uo)l = 

1 

4 
-I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

i 



-57- 

Upon subs t i tu t ing  t h e  above expressions in to  Eq. 58, Eqs. 70 a r e  obtained: 

= mi ( 2 ) uo [Uf (1 + &2) i +  - uo (1 + &) $1 
(A. 40a) 

= 2ai ( 2 )  [ Jq- + UoG0(Uo)~ 7 
(A. 40c ) 
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1 - - -  

(A. 40d) 

+ hl 

2 m. 

(A. 40e) 

Subst i tut ing E q s .  A . 4 0  i n to  Eq. 60 y ie lds  E q s .  72. 

in Eqs .  72 are obtained by s e t t i n g  uoi = u 

Eqs .  70. 

D, and DZ appearing 

= 0 i n  D, and DZ, given by 

- 

oe - 
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